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ABSTRACT: Face recognition aims to establish the identity of a person based on facial characteristics. On the other hand, age group estima-
tion is the automatic calculation of an individual’s age range based on facial features. Recognizing age-separated face images is still a challeng-
ing research problem due to complex aging processes involving different types of facial tissues, skin, fat, muscles, and bones. Certain holistic
and local facial features are used to recognize age-separated face images. However, most of the existing methods recognize face images without
incorporating the knowledge learned from age group estimation. In this paper, we propose an age-assisted face recognition approach to handle
aging variations. Inspired by the observation that facial asymmetry is an age-dependent intrinsic facial feature, we first use asymmetric facial
dimensions to estimate the age group of a given face image. Deeply learned asymmetric facial features are then extracted for face recognition
using a deep convolutional neural network (dCNN). Finally, we integrate the knowledge learned from the age group estimation into the face
recognition algorithm using the same dCNN. This integration results in a significant improvement in the overall performance compared to using
the face recognition algorithm alone. The experimental results on two large facial aging datasets, the MORPH and FERET sets, show that the
proposed age group estimation based on the face recognition approach yields superior performance compared to some existing state-of-the-art
methods.
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Accurate age group estimation has many applications in fields
such as homeland security, forensic science, and passport ser-
vices; it can also be used for locating missing persons, determin-
ing the age of asylum seekers with missing legal documents,
controlling pedophilia, conducting statistical analysis (e.g., class-
wise age distribution), limiting access to the purchase of certain
commodities (e.g., alcohol and tobacco), and controlling some
human–computer interactions (HCI) (e.g., limiting Internet
access to certain age groups). As an active research area, both
human perception-based and machine-based age group estima-
tion algorithms have been reported in the literature. Despite sig-
nificant advances and ample work in related research areas, see,
for example, Fu and Huang (1), Yang and Ai (2), Ylioinas et al.
(3), Lu and Tan (4), Hu and Jain (5), Han et al. (6), and Guo
and Mu (7), existing methods have certain limitations, which
include the following: (i) the use of handcrafted features that
have poor discriminative power and that are vulnerable to certain
extrinsic variations, such as facial makeup (8); and (ii) the lack
of related studies that integrate the knowledge learned from age
group estimation into face recognition algorithms. In this work,
we have used deeply learned asymmetric features. A face

recognition algorithm is developed that seeks the knowledge
learned from age group estimation to recognize face images. The
current research focuses on age group estimation instead of the
exact age, for the purpose of using certain characteristics of a
given age group to recognize age-separated face images.

Related Work

This study consists of two components: (i) age group estima-
tion and (ii) recognition of age-separated face images. Hence,
the related work of the two components is discussed separately.

Age Group Estimation

The motivation for age estimation systems has grown over the
past few decades, given the rise of the digital age and the
increase in human–computer interaction. Recently, the Face
Recognition Vendor Test (FRVT) evaluated the performance of
facial age estimation as a new area of study with Still Images
Track (9). The main objectives of this evaluation include the
assessment of current age estimation technology and the investi-
gation of the estimation accuracy on large-scale datasets across
demographic variations.
A literature survey related to age estimation can be broadly

classified into two categories: (i) human perception-based age
estimation and (ii) machine-based age estimation. With regard to
human perception-based age estimation, a detailed survey pre-
sented by Rhodes (10) shows that humans can estimate the age
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of previously unseen face images quite accurately. The age esti-
mation accuracy evaluated by two groups of human participants
is discussed in Burt and Perrett (11), with a reported deviation
of 2.39 years. The effect of feature manipulation and the influ-
ence of certain local regions in age estimation are presented in
George and Hole (12) and Jones and Smith (13).
With regard to facial age estimation by machines, a number

of age estimation methods have been reviewed in Fu et al. (14).
In a pioneer work presented by Kwon and Lobo (15), facial age
group classification is performed using facial features. In (1),
aging manifolds have been used toward accurate age estimation.
Local facial features have been used in (2) for binary age group
classification. Variants of local binary patterns (LBP) with sup-
port vector machines (SVM) have been employed in (3) toward
accurate age group classification. Manifolds of raw intensity are
used in (4) for age and head pose estimation. In (5), biologically
inspired features (BIF) have been used for age, gender, and eth-
nical group classification. A recent study (6) gives a comprehen-
sive account of human versus machine performance for the joint
estimation of age, gender, and ethnical group. In most of the
related studies, it is observed that the age estimation accuracy
decreases with the age progression due to many factors, such as
the gender, ethnical group, stress levels, eating, and sleeping
habits, which altogether result in an individual’s age progression
function.

Recognition of Age-separated Face Images

The second aspect of this study aims at recognizing face
images across aging variations. Recently, a number of related
studies have been reported in the literature, such as Ling et al.
(16), Park et al. (17), Li et al. (18), Yadav et al. (19), and Sun-
gatullina et al. (20). Overall, the existing methods can be classi-
fied as generative or discriminative. The generative methods
focus on facial age synthesis. A representative study in this cate-
gory is reported in (17). Despite their strong discriminative
power, such methods depend on complex age synthesis. Discrim-
inative methods, on the other hand, use multiple face features to
achieve robust recognition performance. Some of the representa-
tive works in this category include (18–20). In (18), facial over-
lapping patches are used to extract local features, and
subsequently, discriminant analysis is performed for recognition.
In (19), a bacteria foraging fusion (BFF) scheme achieves supe-
rior performance by optimizing the region-specific weights. A
local feature-based multiview discriminative learning (MDL)
approach is presented in (20). More recently, the effects of facial
aging on recognition performance across a large population have
been studied in (21). Despite the state-of-the-art performance,
these approaches exhibit two main limitations: (i) lack of facial
feature evaluations with temporal variations and (ii) a lack of dis-
criminative information because most of these methods utilize a
single set of facial features. For example, appearance-based facial
features show poor performance in recognizing face images
across temporal variations, owing to their sheer dependence on
raw pixel intensities (22). Local features, although used in many
age invariant face recognition methods, are vulnerable to external
face variations, for example, facial makeup (8). Table 1 summa-
rizes some recent studies that cover age group estimation and
face recognition. The results reported in the previous related stud-
ies suggest that there is a vast scope to improve the accuracy of
age group estimation and age-separated face recognition algo-
rithms. The aim of the current study is to develop an age-assisted
face recognition algorithm based on facial asymmetry.

Some of the existing methods report facial asymmetry to rec-
ognize face images, such as Liu et al. (23) and Gutta and Wech-
sler (24). In (23), facial asymmetry was used for expression-
invariant human identification. In (24), left- or right-sided asym-
metry was used to recognize face images, especially in situations
in which a full face is not available. To understand the possibil-
ity of matching the left and right ears, an analysis of the symme-
try of human ears is presented in (25). Keeping in view the
existing methods, the role of facial asymmetry in age group esti-
mation and age-assisted face recognition is yet to be explored.
The proposed method differs significantly from previous
approaches such that existing approaches are discriminative or
generative in nature, and our approach belongs to the discrimina-
tive category with integration of the knowledge learned from age
group estimation into a face recognition algorithm.
The main contributions of this research are as follows:

• Facial asymmetry-based age group estimation.
• Study of the role of different asymmetric facial regions in

age group estimation and age-assisted face recognition.
• Design of a face recognition algorithm inspired from age

group estimation.

The Facial Aging Databases

The current study focused on two publicly available face data-
bases, MORPH II (26) and FERET (27), as described below.
• MORPH II is a large longitudinal face database. It contains

55,134 face images of over 13,000 subjects with aging varia-
tions. MORPH II has been extensively used in research related
to age estimation and face recognition, such as (18,20).

• FERET is another large face database, which contains 3540
frontal face images of 1196 subjects. The database contains
two subsets, dup I and dup II, which contain facial images
that have small and large temporal variations in addition to a
gallery set called the fa set.

Unlike some other large face databases (e.g., the LFW data-
base [28]), both MORPH II and FERET provide necessary
demographic information on the subjects, including the age, gen-
der, and ethnical group, which is useful for conducting research
related to age group estimation and face recognition across a
time lapse. Example face images from the MORPH II and
FERET datasets are shown in Fig. 1, while key statistics are
given in Table 2.

Etiology, Measurement, and Assessment of Facial
Asymmetry

Etiology of Facial Asymmetry

Facial asymmetry refers to noncorrespondence in shape, size,
and arrangement of bilateral facial landmarks. Facial asymmetry
is an intrinsic facial characteristic, even in young healthy sub-
jects (Ercan et al. [29]). Facial asymmetry can be classified as
follows: (i) acquired, (ii) congenital, and (iii) developmental
(Cheong and Lo [30]). Acquired facial asymmetry results from
pathological or traumatic reasons. The congenital type is seen at
birth, and its origin is in genetics, while the developmental type
is commonly seen in the general population and appears with
the progression of age. The developmental facial asymmetry
finds its origin in one-sided habitual chewing and one-sided
sleep in addition to other reasons. In this study, we present an
assessment of facial asymmetry across aging variations and its
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role in age group estimation and age-assisted face recognition.
For this purpose, the face images are first preprocessed, and
facial landmarks are detected as described below.

Preprocessing and Facial Landmark Detection

To mitigate the effects of extrinsic variations, the face images
were preprocessed as follows:
• All of the face images were rotated and aligned based on eye

coordinates such that they are vertically upright.
• All of the face images were then cropped into a 128 9 128

pixel size with an equal interpupillary distance (IPD).

• Color face images were converted to grayscale images to
alleviate unwanted color effects. For this purpose, a lumi-
nance model adopted by NTSC and JPEG was used, as
shown in Eq. 1.

Y ¼ 0:299Rþ 0:587Gþ 0:114B; ð1Þ

where R, G, and B represent the red, green, and blue color chan-
nels and Y is the resulting grayscale image.
• To remove unwanted illumination variations from the result-

ing grayscale images, histogram equalization was used.

TABLE 1––Summary of some recent approaches on (a) age estimation and (b) recognition for age-separated face images.

(a)

Representative Work (year) Features Employed Face Database
Performance
Measure

Age
Estimation Face Recognition

Ylioinas et al. (2012) (3) Variants of local binary
patterns (LBP)

Images of groups Rank 1 classification
accuracy

Studied Not studied

Lu and Tan (2013) (4) Manifolds of raw intensity MORPH II Mean absolute
error (MAE)

Studied Not studied

Hu and Jain (2014) (5) Biologically inspired
features (BIF)

Images of groups,
LFW+

Age group
classification
accuracy

Studied Not studied

Han et al. (2015) (6) Biologically inspired
features (BIF)

FG-NET, MORPH
II, PCSO, LFW

Mean absolute
error (MAE)

Studied Not studied

(b)

Representative
Work (year) Features Employed Face Database

Performance Measure
and Accuracy Age Estimation

Face
Recognition

Park et al. (2010) (17) Aging patterns based on
PCA coefficients

FG-NET, MORPH II Rank 1 recognition accuracy Not studied Studied

Li et al. (2011) (18) Scale invariant feature
transform (SIFT) and
multiscale local binary
patterns (MLBP)

FG-NET, MORPH II Rank 1 recognition accuracy Not studied Studied

Yadav et al. (2013) (19) Local binary patterns (LBP) FG-NET, IIIT Delhi Rank 1 recognition accuracy Not studied Studied
Sungatullina et al.
(2013) (20)

Local binary patterns, scale
invariant feature transform,
and gradient orientation
pyramid (GOP)

FG-NET, MORPH II Rank 1 recognition accuracy Not Studied Studied

Proposed work Deeply learned aggregated
asymmetric facial features (da-AFF)

MORPH II, FERET Age group classification
accuracy/Rank 1
recognition accuracy

Studied Studied

FIG. 1––Sample image pairs showing intrasubject temporal variations from MORPH II (top row) and FERET (bottom row) datasets.
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After the preprocessing stage, 64 facial landmarks were
detected (Fig. 2) using the following two methods:
(i) Manual annotation as per the definitions of the correspond-

ing landmarks given in Table 3 and (ii) a state-of-the-art face
recognition and analysis tool, Face++ (31). To check the validity
of the chosen methods, the average error was calculated, which
resulted in 1 pixel per image for all of the selected landmarks.
The error results show a negligible error between the landmark
points that were extracted automatically and their actual physical
correspondence. Among the detected facial landmarks, 36 land-
marks, previously used by Ercan et al. (29), were selected
(shown by the numbers in Fig. 2 and illustrated in Table 3) for
the measurement and assessment of facial asymmetry across
temporal variations, as described below.

Measurement and Assessment of Facial Asymmetry across
Temporal Variations

This section presents an account of the facial asymmetry mea-
surement and assessment across temporal variations, as described
below.

Measurement of Facial Asymmetry—To measure facial asym-
metry, the horizontal facial asymmetry (HFA), vertical facial
asymmetry (VFA), and angular facial asymmetry (AFA) were
used. For HFA, a vertical axis (P3P4) was determined by fitting
a least square regression line (termed as the facial midline in the
remainder of the text) through six facial landmarks (#25–30),
while for VFA, a horizontal axis (P1P2) was determined by
joining the eye coordinates of a subject looking straight, as
shown in Fig. 3a–c. As the distance between the eye coordinates
remains the same for the subjects not looking straight, the same
procedure was used to determine the horizontal axis for such
subjects, as shown in Fig. 3d–f.
Finally, fifteen horizontal and eleven vertical facial asymmet-

ric distances of selected pairs of bilateral facial landmarks were
measured, referenced as P3P4 and P1P2, using Eqs (2) and (3),
respectively.

HFA ¼ dlh � drh; ð2Þ

VFA ¼ dlv � drv; ð3Þ

where dlh, drh, dlv, and drv represent the left- and right-sided hor-
izontal and vertical interpixel distances of the selected bilateral
facial landmarks, respectively.
In addition to the horizontal and vertical linear asymmetric

measurements, eight angular facial asymmetric distances were
measured to define the angular facial asymmetry (AFA), as
shown in Eq. 4.

AFA ¼ gl � gr; ð4Þ

where gl and gr represent the left- and right-sided angular mea-
surements in degrees.
The selected horizontal, vertical, and angular asymmetric dis-

tances (called the horizontal, vertical, and angular dimensions in
the remainder of the text) are given in Tables 4–6, respectively.
The selected dimensions were used to (i) evaluate how facial

asymmetry varies across time, (ii) assess the correlation between

TABLE 2––Statistics of publicly available MORPH II and FERET data-
bases.

MORPH II

FERET

Fa set Dup I set Dup II set

# Subjects 13,000+ 1196 243 75
# Images 55,134 1196 722 234
# Average
images/
subject

4 1 2.97 3.12

Temporal
variations

Minimum:
1 day

Maximum:
1681 days

N/A Images were
acquired later
in a time with
maximum
temporal variation
of 1031 days as
compared to
corresponding
gallery images

Images were
acquired at
least 1.5
years later than
corresponding
gallery images

Age range
(years)

16–77 10–60+

FIG. 2––Automatic facial landmark detection using Face++ (31) (face
image taken from FERET dataset).

TABLE 3––Illustration of facial landmarks (29).

Type of
Facial
Landmarks Landmark # Location

Name of Facial
Landmark Abbreviation

Pairs of
bilateral
facial
landmarks

1 and 4 Eyes Exocanthion Exo
2 and 3 Eyes Endocanthion End
5 and 6 Eyebrows Frontotemporale Fronto
7 and 8 Eyes Palpebrale superius Palp-Sup
9 and 10 Eyes Palpebrale inferius Palp-Inf
11 and 12 Nose

bridge
Maxillofrontale Maxil

13 and 14 Nose Lateral cartilage Lat-Cart
15 and 16 Nose Alare Ala
17 and 18 Nose Subalare Sub-Ala
19 and 20 Lips Crista philter Crist
21 and 22 Lips Cheilion Cheil
23 and 24 Face Gonion Goni
31 and 32 Face Zygion Zyg
33 and 34 Face Cheek Chk
35 and 36 Face Inferior border Inf-Bord

Single facial
landmarks

25 Nose Pronasale Prona
26 Nose Subnasale Sub-Nas
27 Lips Labiale superius Lab-Sup
28 Lips Stomion Stomio
29 Lips Labiale inferius Lab-Inf
30 Chin Gnathion Ganth
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the horizontal, vertical, and angular dimensions, and (iii) develop
a hierarchical approach to perform age group estimation, as
described below.

Facial Asymmetry Assessment across Temporal Variations—
To assess the facial asymmetry, we select subsets of face images
from the MORPH II and FERET databases, such that the
selected images represent small and large temporal variations, as
described below.
• In the case of the MORPH II database, a subset that consists

of 30,000 images of 10,000 subjects (three images per sub-
ject) was selected representing the youngest, older, and oldest
face images of each selected subject. Here, the older and old-
est images represent small and large temporal variations,
respectively.

• In the case of the FERET database, a subset that consists of
75 images from fa set, 75 images from dup I set, and 75
images from dup II set was selected such that the images of
the subjects present in fa set were also present in the dup I
and dup II sets.

To assess the facial asymmetry across temporal variations, the
mean and standard deviation (SD) of 15 horizontal, 11 vertical,
and 8 angular dimensions were computed and normalized in the
range of (0–1) for the face images in the selected subsets. The
results were reported in terms of bar graphs, as shown in Fig. 4,
with the following two important conclusions:
• Horizontal, vertical, and angular facial asymmetry increases

from the upper to lower parts of the face. For example, a
facial region that contains the cheilion and gonion landmarks

is more asymmetric compared to a facial region that contains
the frontotemporale and exocanthion landmarks. More pro-
nounced facial asymmetry for the lower parts of the face can
be attributed to the response of functional adaptation to asym-
metrical masticatory activity in these parts, as suggested by
Vig and Hewitt in (32). The control of the facial musculature
is complex, with different patterns of neural innervations pre-
sent for the upper versus the lower face, depending on the
nature of the neurological control of the bilateral facial parts
by the two cerebral hemispheres (32).

• Horizontal and vertical facial asymmetry increases with age
progression. A small increase in facial asymmetry is observed
when the mean and SD of the image sets with small aging
variations are compared with those of the youngest face
image set from MORPH II and from fa set in the FERET
dataset, respectively. On the other hand, such variations are
more pronounced when the mean and SD of the image sets
with large aging variations are compared with the youngest
face image set from MORPH II and the dup II set from the
FERET database, respectively. Hence, it is concluded that the
facial asymmetry is a strong indicator of the facial age, which
increases with age progression.

To analyze the effects of rotation and resizing of the face
images on facial asymmetry, we measured and evaluated the
facial asymmetry on raw face images (i.e., without preprocess-
ing). The mean and SD of the horizontal, vertical, and angular
dimensions were also normalized in the range of (0–1), as shown
in Fig. 5. The comparison of the mean and SD of the

FIG. 3––Top row: (a) original face image of a subject looking straight, (b) detected facial landmarks, (c) facial midline (P3P4) and line joining eye coordi-
nates (P1P2). Bottom row: (d) original face image of a subject not looking straight, (e) detected landmarks, (f) facial midline (P3P4) and line joining eye
coordinates P1P2.
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preprocessed and raw face images reveals that facial asymmetry
is not affected by the alignment process. This alignment invari-
ance can be attributed to the structured nature of anthropometric-
based asymmetric facial features compared to the unstructured
microlevel features, as suggested in (22).
We also analyzed facial asymmetry variations for an individ-

ual subject across a time lapse. Figure 6 shows the variations in
the horizontal, vertical, and angular dimensions of an individual
subject at three different ages, 38, 40, and 42 years of age. The
dimension variations show that facial asymmetry is an age-
dependent facial characteristic that increases with age.
Once facial asymmetry is assessed across temporal variations,

the next goal is to evaluate any correlation between the horizon-
tal, vertical, and angular dimensions.
To analyze the mutual independence of the horizontal, verti-

cal, and angular dimensions, we performed the Pearson’s correla-
tion test between 15 horizontal, 11 vertical, and 8 angular
dimensions. It was observed that 82.35% of the horizontal, verti-
cal, and angular dimensions represent weak correlations (<0.5)
and, hence, are mutually independent. Figure 7 shows correla-
tion matrices in the form of correlograms that highlight the
degree of correlation between the horizontal, vertical, and angu-
lar dimensions. Motivated by this fact, the horizontal, vertical,
and angular dimensions were used as independent measures of
facial asymmetry in subsequent analysis for the age group esti-
mation task, as described below.

Age Group Estimation

This section presents a facial asymmetry-based hierarchical
approach for age group estimation. For this purpose, face
images were normalized against different types of appearance
variations, as explained in Section 2. To perform facial asym-
metry-based age group estimation, it was desirable to represent
face images in terms of horizontal, vertical, and angular
dimensions and select a subset of these dimensions such that
the selected subset could discriminate between images that
belong to two different age groups. The F-test (Snedecor and
Cochran [33]) was used for dimension selection, while

canonical correlation analysis (CCA) (Hotelling [34,35]) was
used to find a linear combination of a selected subset of
dimensions and hence calculate a discriminating score to clas-
sify the face images that belong to two different age groups.
Finally, the discriminating scores were applied as an input to
a support vector machine (SVM)-based binary tree classifier to
achieve the age group estimation. An overview of the pro-
posed approach is shown in Fig. 8.

Dimension Selection

A qualitative analysis of the projection of the original 15 hori-
zontal, 11 vertical, and 8 angular dimensions on the first four
principal components showed that it was not possible to discrim-
inate face images that belong to two given age groups based on
these 34 dimensions, altogether. This outcome revealed the fact
that the original 34-dimensional space was unable to discrimi-
nate between two age groups, based on their simple linear com-
binations. Hence, a statistical procedure was used to determine
whether a subset of the original dimensions could be discrimina-
tive between two age groups for a given set of face images, as
illustrated below.
Given a training set G with S samples, such that,

G ¼ fðxi; yiÞ : xi 2 Rv; yi 2 N; i 2 ½1; s�g; ð5Þ

where xi represents v-dimensional feature vectors, which repre-
sent the original dimensions from the ith training face image and
yi represents the corresponding labels. The aim is to select a sub-
set H with dimension v0 of the original dimensions such that,

H ¼ fx0i : x0i 2 Rv0 ; x0i � xi; i 2 ½1; s�g; ð6Þ

where v0 < v, which can retain discriminative dimensions to clas-
sify face images that belong to two given age groups. For the
age group classification task, the labels yi 2 f0; 1g represent the
respective age groups, that is, {Agegroup1, Agegroup2}. To
accomplish this goal, we divided a set of face images into two
groups, with a set of 34 original dimensions extracted for each
face image. The univariate F-test (33) was performed for each of

TABLE 4––Horizontal dimensions.

Pairs of Bilateral
Facial Landmarks 1,4 2,3 5,6 7,8 9,10 11,12 13,14 15,16 17,18 19,20 21,22 23, 24 31,32 33,34 35,36

Horizontal dimensions HA1 HA2 HA3 HA4 HA5 HA6 HA7 HA8 HA9 HA10 HA11 HA12 HA13 HA14 HA15

TABLE 5––Vertical dimensions.

Pairs of Bilateral
Facial Landmarks 9,10 11,12 13,14 15,16 17,18 19,20 21,22 23,24 31,32 33,34 35,36

Vertical dimensions VA1 VA2 VA3 VA4 VA5 VA6 VA7 VA8 VA9 VA10 VA11

TABLE 6––Angular dimensions.

Triads of Bilateral
Facial Landmarks

(19,21,30)
and

(20,22,30)

(1,7,9)
and

(4,8,10)

(13,15,17)
and

(14,16,18)

(1,7,11)
and

(4,8,12)
(11,13,17) and
(12,14,18)

(21,25,30) and
(22,25,30)

(23,27,30)
and

(24,27,30)

(25,27,30)
and

(25,28,30)

Angular dimensions AA1 AA2 AA3 AA4 AA5 AA6 AA7 AA8
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FIG. 4––Comparison of mean and standard deviation: (a-c) horizontal dimensions, (d–f) vertical dimensions, and (g–i) angular dimensions for preprocessed
face images from FERET and MORPH datasets.
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FIG. 5––Comparison of mean and standard deviation: (a-c) horizontal dimensions, (d–f) vertical dimensions, and (g–i) angular dimensions for raw face
images from FERET and MORPH datasets.
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the 34 original dimensions to measure the significant difference
between the means of the dimensions of two age groups. An
F-test for a particular dimension can be defined as in Eq. 7.

F ¼ Total variance
Average within group variance

: ð7Þ

A larger value of F for a given dimension shows that it is
more discriminating between two age groups, compared to other
dimensions. The procedure was repeated for all dimensions, and
we selected only those dimensions whose F values were greater
than a predetermined threshold, as calculated empirically. All of
the other dimensions were discarded, and further analysis was
performed using the selected dimensions only. An F-test was
performed on the MORPH II and FERET datasets, as described
below.
• Ten thousand youngest face images from the MORPH II

database (one image per subject) were selected, and 1196
face images of 1196 subjects (one image per subject) from
the fa set of the FERET database were selected. An F-test
was performed on the selected image sets by dividing the
images into two age groups, age group 1 (16–30 for MORPH
II and 10–30 for FERET datasets) and age group 2 (31–60+
in the case of both the MORPH II and FERET datasets),
based on the ground truth information. Table 7 illustrates the
F-test results for the two age groups for the MORPH II and
FERET datasets, with the top seven selected dimensions

(HA1, HA2, HA3, VA1, VA2, AA2, and AA4) along with
the corresponding p values, which suggests the significance
of the selected dimensions. It can be observed that these
seven dimensions (called the discriminating dimensions in the
remainder of the text) are the most discriminating among the
other dimensions for discriminating between the two men-
tioned age groups. This observation can be attributed to
increased facial asymmetry with increasing age, because the
facial hemi-sides are functionally asymmetric with increasing
age (29), which is not surprising given the morphogenetic
link between the brain and the craniofacial appearance.

• To assess the robustness of the proposed method, the proce-
dure was repeated for selected sets from the MORPH II and
FERET databases. The rate of recurrence of each measure-
ment was recorded for each of the three image sets, as shown
in Fig. 9a,b, respectively. The results show the most frequent
occurrence of HA1, HA2, HA3, VA1, VA2, AA2, and AA4,
which suggests the robustness of the proposed approach in
selecting the most discriminating dimensions for the age
group classification.

We also selected two other feature selection methods to
check the validity of the F-test described above. These meth-
ods include (i) sequential floating forward selection (SFFS)
(36) and (ii) correlation-based feature selection (37) (CFS).
The chosen SFFS can be considered to be floating up and
down during the process of dimension subset selection. After
each forward step, SFFS performs backward steps as long as

FIG. 6––Facial asymmetry variation across time lapse for a single subject: (a) face images with temporal variations, (b) horizontal, (c) vertical, and
(d) angular asymmetric variations for selected landmarks of subject shown in part (a).
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FIG. 7––Correlation matrices: (a) horizontal versus vertical, (b) horizontal versus angular, and (c) vertical versus angular dimensions. (Positive correlations
are displayed in red and negative correlations in blue color. Color intensity and the size of the circle are proportional to the correlation coefficients. In the
right side of each correlogram, the legend color shows the correlation coefficients in the range of �1 to 1 and the corresponding colors).
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the objective function increases. The CFS method consists of
two parts, a dimension correlation measure based on Pearson’s
correlation coefficient and a best-first heuristic search algo-
rithm that moves through the search space by greedy hill-
climbing supported by a back-tracking facility. In practice, we
performed dimension selection using F-test, SFFS, and CFS.
The selected dimensions by all three methods are shown in
Fig. 9a,b for both the MORPH II and FERET datasets,
respectively. It can be observed that the occurrence of selected
dimensions was the same for all three methods, which sug-
gests the efficacy of the proposed method for dimension
selection.
The same procedure was repeated by splitting the selected

image sets from the MORPH II and FERET datasets into
four age groups, age group 11, age group 12, age group 21,
and age group 22 (16–20, 21–30, 31–45, and 46–60+ for
MORPH II, while 10–20, 21–30, 31–45, and 46–60+ for the
FERET datasets, respectively). It can be observed that
dimensions HA1, HA4, HA7, VA1, VA3, AA1, and AA4
are the most discriminating between age group 11 and age
group 12, while the dimensions HA2, HA7, HA13, VA1,
VA3, VA6, and AA7 are most discriminating between age
group 21 and age group 22, for both the MORPH II and
FERET datasets.

Discriminating Scores

After the selection of a subset of the most discriminating
dimensions through the F-test, the next stage is the learning of
(i) a subspace, based on a linear combination of discriminating
dimensions, to calculate the discriminating scores to classify the
face images into two age groups and (ii) the relative contribution
of each discriminating dimension to classify the two age groups.
For this purpose, the well-known canonical correlation analysis
(CCA) was used, as described below.

Canonical Correlation Analysis (CCA)—For a given set of
objects with two different representations, canonical correlation
analysis (CCA) aims at computing a projection such that the cor-
relation between two representations is maximized in a subspace
with reduced dimensionality.
Consider two multivariate random variables, u 2 RDx and

v 2 RDy . Let the groups Gx = {x1, x2, . . ., xn} and Gy = {y1, y2,
. . ., yn} be paired. CCA aims at finding new coordinates for x
and y by selecting directions a 2 RDx and b 2 RDy such that the

correlation between the projections of Gx and Gy on a and b is
maximized, that is,

q ¼ max
a;b

a0Cxyaffiffiffiffiffiffiffiffiffiffiffiffiffi
a0Cxxa

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
a0Cyya

p ; ð8Þ

where q is the correlation, Cxy is the between-group covariance
matrix, and Cxx and Cyy are the within-group covariance matri-
ces. The problem can be reduced to a generalized eigenvalue
problem, as shown in Eq. 9.

C�1
xx CxyC

�1
yy Cyx ¼ ka; ð9Þ

where a corresponds to the top eigenvector.
In the case of the age group classification task, it has been

observed that a projection direction with the largest eigenvalue
was significantly higher than the second largest eigenvalue,
which verifies the possibility of representing and hence discrimi-
nating the data in a single dimension. The relative contribution
of each discriminating dimension was also calculated in terms of
the magnitude and polarity of the relevant canonical coefficients.
The linear combination of such dimensions then resulted in a
linear function that represents the face images from the two age
groups. For a set of 200 face images from the youngest face
image set of the MORPH II dataset, sample canonical coeffi-
cients with relative magnitude and polarity are shown in
Table 8. It has been observed that the larger the values of HA1
and VA1 are, the more likely it is that the subject belongs to
age group 1. Similarly, the larger the values are of HA2, HA3,
and VA2, the more likely that the subject will belong to age
group 2. A sample scatter plot that shows the discriminating
scores for two age groups (16–30 and 31–60+) for the 200
youngest face image set from the MORPH II dataset is shown in
Fig. 10.
From Fig. 10, it can be observed that the discriminating scores

determined through CCA cannot completely distinguish between
the two age groups due to overlap. To improve the classification,
the discriminating scores were applied to an SVM-based binary
tree classifier, as explained in the following subsection.

Binary Tree Classification for Age Group Estimation

The age group classification problem presented in this study
can be defined as a binary classification task. To handle such a
classification problem, a two-level hierarchical age group

FIG. 8––Overview of the proposed age group estimation approach.
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classification method was proposed, which uses discriminating
scores, calculated from CCA, as an input to the SVM-based bin-
ary tree classifiers, as shown in Fig. 11. Three binary SVM clas-
sifiers (C, C1, and C2) were used to learn a two-level binary
decision tree (Vapnik [38]). A given test face image can then be
classified either into one of the binary age groups (age group 1
or age group 2) at level 1 or into one of four age groups (age
group 11, age group 12, age group 21, and age group 22) at
level 2 of the binary decision tree.
The support vector machine has been successfully used for

age classification problems, as reported in (5). In the current
study, a publicly available LIBSVM source (Chang and Lin
[39]) was used. The labels (0, 1) were used for binary classifica-
tion of two age groups when training the SVM-based binary tree
classifiers. The RBF kernel was used with SVM with parameters
c and c selected using a 5-fold cross-validation protocol on the
training set. The thresholds t, t1 and t2, which were used to parti-
tion the age range, were empirically determined, due to the over-
lapping nature of the discriminating scores learned from the
CCA algorithm.
Previously, hierarchical methods have been studied for age

group estimation problems, such as in Choi et al. (40) and
Thukral et al. (41). The current approach differs from these
methods in that instead of dividing the entire age range directly
into a certain number of age groups (e.g., four age groups for

the age range of 0–70 years in [41]), the proposed approach
uses a coarse-to-fine strategy for the age group classification,
which is similar to that proposed in Han et al. (6). However,
the proposed approach uses a two-stage age group classifica-
tion, first by calculating discriminating scores using canonical
correlation analysis (CCA) and then using an SVM binary clas-
sifier. The second-stage classification mitigates the classification
errors produced by the CCA due to the overlap of the discrimi-
nating scores.

Evaluation and Experimental Results of the Age Group
Estimation Approach

To evaluate the performance of the proposed approach, the
10,000 youngest face images (of 10,000 subjects) from the
MORPH II database were partitioned into a training set and a
test set with 5000 face images in each set, with an age range of
16–60+ years. Similarly, 1196 face images from the fa set of the
FERET database were partitioned into a training set and a test
set, with 598 face images in each set and an age range of 10–
60+ years. A fivefold cross-validation method was used to eval-
uate the proposed age group estimation algorithm. The age
group estimation accuracy is shown in a trained predicted confu-
sion matrix in Table 9a,b, in which the ages of the subjects
belong to one of four age groups: 16–20, 21–30, 31–45, and

TABLE 7––F-test results for top seven discriminating dimensions for MORPH II and FERET datasets.

MORPH II FERET

Selected Dimensions HA1 HA2 AA2 VA2 AA4 HA3 VA1 HA1 HA2 AA2 VA2 AA4 HA3 VA1

F values 7.0 4.1 3.1 2.5 2.0 1.8 1.2 6.6 3.2 3.0 2.0 2.1 1.1 1.0
p values 0.001 0.000 0.002 0.003 0.001 0.002 0.001 0.000 0.000 0.001 0.004 0.002 0.001 0.002

FIG. 9––Rate of recurrence of selected dimensions extracted from three different image sets from (a) MORPH II and (b) FERET datasets.
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46–60+ for the MORPH II dataset, while 10–20, 21–30, 31–45,
and 46–60+ for the FERET dataset.

Comparison with Existing Methods—The performance of the
proposed age group estimation approach was compared with the
following existing state-of-the-art approaches.
• A local binary pattern (LBP)-based approach proposed in

Ylioinas et al. (3).
• Face ++ (31), an independently trained, state-of-the-art age

group estimation algorithm.

Sensitivity, which represents the true-positive performance
(42), was computed as a measure of the overall accuracy for the
proposed and existing methods. The LBP-based approach (Ylioi-
nas et al. [3]) gave an overall age group accuracy of 79.41% and
77.99% on the MORPH II and FERET datasets, respectively. The
Face ++ (31) gave an overall age group estimation accuracy of
87.26% and 86.23% on the MORPH II and FERET datasets,
compared to the proposed method, which resulted in an overall
accuracy of 93.86% and 92.98% on the MORPH II and FERET
datasets, respectively. Table 10a,b summarizes the age group esti-
mation accuracies for the proposed and existing methods.

Effect of Asymmetric Facial Regions on Age Group Estimation

Variations in the facial asymmetry were observed for different
facial landmarks while evaluating the facial asymmetry in Sec-
tion 2. Motivated by this fact, the next goal is to understand the
effect of various asymmetric facial regions on the age group
estimation performance. To accomplish this goal, each face
image was divided into four distinct regions, region 1 (land-
marks: 5, 6, 7, and 8), region 2 (landmarks: 1, 2, 3, 4, 9, 10,
11, and 12), region 3 (landmarks: 13, 14, 15, 16, 17, and 18),
and region 4 (landmarks: 19, 20, 21, 22, 23, and 24). Each
region was used individually to estimate the age groups using a
similar experimental setup as employed in the age group estima-
tion task described in Section 3.4. The results for this experi-
ment are shown in Table 11a,b, for both the MORPH II and
FERET datasets. It can be observed that the age group estima-
tion accuracy increases from the upper to the lower regions of
the face, which is attributed to more pronounced facial asymme-
try for these regions and hence a more prominent role of the
corresponding dimensions in the age group estimation. For
example, in the case of age group 16–20 for the MORPH II
dataset, region 4 (composed of the lower facial landmarks) gave
an estimation accuracy of 46.56% compared to region 1, which
had an estimation accuracy of 37.95% (composed of the upper
facial landmarks). Thus, we conclude that the more asymmetric
a facial region is, the more it contributes to estimating the age
group of a given facial image. To further validate the role of
different asymmetric facial regions in the age group estimation,
we generated a symmetrical face by combining the left half-face
and its mirror image, as shown in Fig. 12. A low, moderate,
and high level of facial asymmetry is then induced in the sym-
metrical face image using a deformation technique based on
moving least squares (43), such that the line that joins the left-

and right-sided lateral cartilage is rotated 5°,10°, and 15° for the
low, moderate, and high level of facial asymmetry, respectively.
The deformed face images with induced facial asymmetry are
shown in Fig. 12c–e. We repeated the age group estimation
experiments using probe face image sets with low, moderate,
and high facial asymmetry. The age group estimation results for
the three probe sets are reported in Table 12a,b for the MORPH
II and FERET datasets, respectively. The results show that
higher estimation accuracies are achieved with higher levels of
facial asymmetry compared to probe sets with low and moderate
levels of asymmetry.

Recognition of Age-Separated Face Images

After the age group estimation task, the next goal is to
design an age-assisted face recognition algorithm. The pro-
posed algorithm seeks to recognize age-separated face images
based on the knowledge learned from age group estimation of
a query face image. Before the implementation of such an
algorithm, it is desirable to understand the roles of various
asymmetric facial regions in recognizing face images across
aging variations. For this purpose, a feature extraction scheme
that is suitable for extracting asymmetrical facial features is
proposed, as follows:

Deeply learned Aggregated Asymmetric Facial Features (da-
AFF)

In this work, we aim at extracting deeply learned asymmetric
facial features (da-AFF) for face recognition. To accomplish this
goal, we first extract a difference half-face image followed by
extracting asymmetric facial regions and asymmetric facial fea-
tures (AFF), as follows:

Extraction of the Difference Half-Face Image—First, the pre-
processed frontal face images from the MORPH II and

TABLE 8––Relative contributions of discriminating dimensions determined
using CCA.

Selected dimensions HA1 HA2 HA3 VA1 VA2

Canonical coefficients
(magnitude and polarity)

�12.05 3.6 7.9 �6.0 2.5

FIG. 10––A sample scatter plot showing discriminating scores for two age
groups of 200 subjects from MORPH II dataset.
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FERET datasets were masked to remove unwanted hair and
background regions. A left–right difference half-face image
(called the difference half-face in the remainder of the text)

was extracted by subtracting the mirror image of the left half-
face (LHF) from the right half-face (RHF). Let IL(x, y) and
IR(x, y) represent the left and right half-face images, respec-
tively. The difference half-face image is then represented as
shown in Eq. 10.

Difference half face ¼ IRðx; yÞ � I 0Lðx; yÞ; ð10Þ

where I 0Lðx; yÞ is the mirror image of IL(x, y). The whole proce-
dure is illustrated in Fig. 13.

Extraction of Asymmetric Facial Regions—The difference
half-face image extracted above contains the left–right asymmetric
facial differences. To extract the corresponding asymmetric facial
regions from the difference half-face, attribute profiles (APs) have
been proposed. Morphological profiles (MPs), defined in Pesaresi
and Benidiktsson (44), are based on antigranulometry and granu-
lometry (closing and opening by reconstruction transformations),
respectively. The morphological opening profile (Πc) for an image
f can be defined as an array of n openings, which is calculated on
the original image, as shown in Eq. 11.

Pcðf Þ ¼ Pckðf Þ : Pckðf Þ ¼ ckRðf Þ
� �

; k ¼ 0; 1; 2; . . .; n: ð11Þ

Similarly, the morphological closing profile (Πφ) is defined in
Eq. 12.

FIG. 11––Two-level hierarchical binary tree classifier for age group classification.

TABLE 9––Confusion matrix for age group classification accuracy (%) for
(a) MORPH II (b) FERET datasets.

(a)

Training Age Groups

Predicted Age Groups

16–20 21–30 31–45 46–60+

16–20 748 58 10 6
21–30 20 1349 40 11
31–45 5 30 2048 50
46–60+ 11 9 21 584

(b)

Training Age Groups

Predicted Age Groups

10–20 21–30 31–45 46–60+

10–20 211 11 7 5
21–30 2 122 3 3
31–45 0 1 80 3
46–60+ 1 3 7 139

The bold values show the classification accuracies of respective age groups

TABLE 10––Age group estimation performance comparison of proposed and existing methods for (a) MORPH II (b) FERET datasets.

(a)

Method

Age Groups

Sensitivity or Overall Accuracy (%)16–20 21–30 31–45 46–60+

Variants of LBP (Ylioinas et al. [3]) 81.99 80.00 76.98 78.67 79.41
Face++ (31) 86.49 86.97 90.62 84.96 87.26
Proposed 90.99 95.00 96.01 93.44 93.86

(b)

Method

Age Groups

Sensitivity or Overall Accuracy (%)10–20 21–30 31–45 46–60+

Variants of LBP (Ylioinas et al. [3]) 80.76 77.69 76.19 77.33 77.99
Face++ (31) 85.47 86.15 89.28 84.00 86.23
Proposed 90.17 93.84 95.23 92.67 92.98
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Puðf Þ ¼ Pukðf Þ : Pukðf Þ ¼ uk
Rðf Þ

� �
; k ¼ 0; 1; 2; . . .; n: ð12Þ

Hence, a morphological profile of size 2n�1 (at k = 0, the
opening and closing profiles are equal to the original image, and
hence, both are considered only once) can be obtained by com-
bining closing and opening profiles, each of size n. Hence, MPs
can be defined as given in Eq. 13.

MPðf Þ ¼ Pukðf Þ; k ¼ ðn� 1þ iÞ i 2 ½1; n�
Pckðf Þ; k ¼ ði� n� 1Þ i 2 ½nþ 1; 2nþ 1�

� �
;

ð13Þ

In Eq. 13, i is the size of the structuring element. Although
the MPs are successful in analyzing the image structures that are
under consideration, such an analysis is only partial. To describe
a shape more precisely, other features, such as the shape and
texture, can also be accounted for. This approach will lead to an
increase in the discriminative power of such analysis in classifi-
cation problems. Second, the structuring elements in the MPs are
not able to completely describe the gray-level characteristics of
the underlying shape, such as the homogeneity and contrast.
Finally, MPs suffer from higher computational complexity.
These drawbacks of MPs can be eliminated by defining attribute
profiles (APs).
Attribute profiles perform image analysis similar to that of

MPs but with greater flexibility in terms of the filtering criterion.
The selection of different attributes makes the characterizations
of the underlying structures possible. Analogously to Eq. 13, the
attribute profile (AP) can be defined as shown in Eq. 14.

APðf Þ¼ Pi :

Pi¼Puuk; k¼ðn�1þ iÞ; 8k2½1;n�;
Pi¼Pcuk; k¼ði�n�1Þ;

8k2½nþ1;2nþ1�

*8><
>:

9>=
>;:

ð14Þ

In the current study, APs have been proposed to extract asym-
metric facial regions on a given set of difference face images. A
set of four APs was generated for each difference face image,
which includes the following:
• Area attribute to measure the area of the facial asymmetric

regions.

• Moment of inertia attribute to describe the geometry of the
underlying asymmetric facial shapes.

• Diagonal attribute to measure the length of the diagonal of
the bounding box. It is worthwhile to note that the diagonal
attribute can detect the facial asymmetries that are caused by
facial marks such as moles or scars by encoding each mark
with a bounding box.

• Standard deviation to measure the homogeneity of the inten-
sity values of the underlying pixels.

Once generated, the combined use of four APs together can
extract the underlying facial asymmetric regions with corre-
sponding temporal variations, from a difference half-face image,
more effectively. A sample difference half-face image and corre-
sponding image with asymmetric facial regions extracted using
the combined use of four APs are shown in Fig. 14a,b,
respectively.

Extraction of Asymmetric Facial Features (AFF)—Once the
asymmetric facial regions have been extracted, the next stage is
extracting the asymmetric facial features (AFF). For this pur-
pose, each difference half-face image was divided into a set of
overlapping patches. To characterize the asymmetric facial
regions, seven geometrical Hu moment invariants (45) were
extracted for each patch and concatenated together to form a sin-
gle AFF feature vector. These Hu moments are invariant to rota-
tion, translation, and scale changes. The procedure to extract the
AFF feature vector is as follows:
Consider a difference half-face image of size h 9 w, with a

patch size p 9 q and overlapping radius r; then, the number of
horizontal (A) and vertical (B) patches obtained is given in
Eqs 15 and 16, respectively.

A ¼ h� p
p� r

þ 1; ð15Þ

A ¼ w� q
q� r

þ 1: ð16Þ

For each patch, a d-dimensional Hu moment invariant was
extracted, which resulted in a d 9 A 9 B-dimensional AFF fea-
ture vector. A similar procedure was adopted to extract the AFF
features from each facial region of the difference half-face
image. To achieve this goal, the difference half-face was first
divided into four regions, Region 1, Region 2, Region 3, and
Region 4. Each region was then divided into C 9 D overlapping
patches to extract d0-dimensional Hu moment invariants for each
patch, which resulted in a d0 9 C 9 D-dimensional AFF
descriptor for each region.
The feature extraction step explained above generates a set

A ¼ a1; a2; . . .; at 2 Rd of local descriptors. However, these
handcrafted descriptors are not optimal for local feature represen-
tation. To address this problem, we propose deeply learned
asymmetric facial features in the following two steps.
Step 1: First, we extract a compact AFF code based on fea-

ture aggregation. Successful techniques for feature aggregation
for deriving image representations from local descriptors
include (i) bag-of-words (BoW) (46), (ii) Fisher vectors (FV)
(47), and (iii) vector of locally aggregated descriptors (VLAD)
(48).
The BoW is essentially a histogram in which local features

are extracted from each image, and each feature is assigned to
the nearest visual word from a visual vocabulary. The result of

TABLE 11––Age group estimation accuracy of different facial regions for
(a) MORPH II and (b) FERET datasets.

(a)
Asymmetric Facial Regions’ Accuracy (%)

Age Group Region 1 Region 2 Region 3 Region 4

16–20 37.95 43.66 44.02 46.56
21–30 35.03 39.50 40.03 40.96
31–45 31.99 41.47 38.02 42.08
46–60+ 27.61 37.53 38.02 40.48

(b)
Asymmetric Facial Regions’ Accuracy (%)

Age Group Region 1 Region 2 Region 3 Region 4

10–20 38.03 43.07 45.23 47.33
21–30 33.33 38.46 39.28 40.00
31–45 30.34 36.15 37.90 39.33
46–60+ 26.06 36.15 38.09 41.33

SAJID ET AL. . AGE-ASSISTED FACE RECOGNITION 15



this process is a fixed length n-dimensional representation of an
image. Despite their success, BoW-based methods suffer from
computational constraints.
Fisher vector (FV) encoding aggregates local image descriptors

based on a Fisher kernel framework. Compared to the BoW,
which only considers the sum of local descriptors in each visual
word, the FV accounts for the higher order statistics, which results
in a more discriminative representation and hence improved per-
formance. However, FV assumes that the local descriptors follow
a Gaussian mixture model, which rarely occurs in practice.
To overcome this limitation, a simplified version of FV called

VLAD was introduced in (48). In case of VLAD, a codebook
{c1, c2, . . . cn} of n cluster centers is learned by applying the K-
means algorithm, and each descriptor at 2 Rd is hard-assigned to
its nearest cluster center NN(at). More precisely, we compute the
cluster-level representations di 2 Rd by aggregating the differ-
ences between the descriptors and their corresponding cluster
centers, that is,

di ¼
X

at :NNðatÞ¼i
at � ci: ð17Þ

Finally, D-dimensional VLAD is obtained by concatenating
all of the aggregated vectors di for all clusters 1, 2, . . ., n. The
resulting aggregated AFF-VLAD representation is called a-AAF
in the remainder of the text.
Step 2: Having obtained a-AFF, we also derive deep convolu-

tional neural networks (dCNN)-based a-AFF features, called da-
AFF. Recent research shows that image descriptors that use

dCNNs achieve state-of-the-art performance, such as in (49),
(50). To encode dCNN-based a-AFF descriptors, a difference
half-face image of size h 9 w is passed through a deep network
architecture called AlexNet (51). The choice of this architecture
was made due to its better performance. This network consists
of five convolutional layers (C1, C2, C3, C4, C5), three pooling
layers (P1, P2, P3), and 3 fully connected layers (f6, f7, f8).
Each convolutional layer is followed by a rectified linear unit
(ReLU). Fully connected layers are regularized using dropout.
Figure 15 shows the graphical representation of the AlexNet
architecture. Facial features are extracted from the second to last
fully connected layer followed by an L2 normalization step. The
output of layer r is a set Ar ¼ far1; ar2; . . .; arng of asymmetric
facial features. A codebook fcr1; cr2; . . .; crng of n cluster centers is
also learned in training. For each centroid, the difference vectors
aln � cnr are computed and concatenated to form the da-AFF rep-
resentation for all of the visual words. Figure 16 shows the pipe-
line of the da-AFF feature extraction.

Effect of the Asymmetric Facial Regions on the Face
Recognition Accuracy

To understand the effect of the different asymmetric facial
regions on the recognition accuracy, identification experiments
were performed using the MORPH II and FERET training and
probe sets. For this purpose, the 10,000 youngest face images
from MORPH II were used in a gallery, while the older and

FIG. 12––Face image deformation: (a) original face image, (b) symmetrical face, (c) deformed face with low asymmetry, (d) deformed face with moderate
asymmetry, and (e) deformed face with high asymmetry.

TABLE 12––Age group estimation accuracies for deformed face images with low, moderate, and high facial asymmetry for (a) MORPH II and (b) FERET
datasets.

(a)
Accuracy (%)

Probe Set 1 (low asymmetry) Probe Set 2 (moderate asymmetry) Probe Set 3 (high asymmetry)

Age Group Region 1 Region 2 Region 3 Region 4 Region 1 Region 2 Region 3 Region 4 Region 1 Region 2 Region 3 Region 4

16–20 32.05 38.00 40.02 42.80 37.00 44.00 43.00 45.00 42.00 48.66 47.70 51.01
21–30 31.00 35.50 35.67 37.00 36.90 39.00 41.00 41.00 39.65 43.50 44.44 45.00
31–45 29.00 36.30 33.78 37.00 31.00 40.60 39.21 41.99 36.20 43.74 42.00 45.98
46–60+ 22.00 32.94 34.00 36.01 28.90 38.82 37.99 40.50 31.00 39.92 42.00 44.00

(b)
Accuracy (%)

Probe Set 1 (low asymmetry) Probe Set 2 (moderate asymmetry) Probe Set 3 (high asymmetry)

Age Group Region 1 Region 2 Region 3 Region 4 Region 1 Region 2 Region 3 Region 4 Region 1 Region 2 Region 3 Region 4

16–20 32.21 37.99 40.00 43.10 37.81 45.01 42.50 45.80 43.23 47.99 47.10 52.00
21–30 32.32 35.00 36.10 37.32 37.00 38.77 41.07 40.79 39.50 43.00 44.00 46.00
31–45 29.99 37.50 34.01 38.67 33.00 40.00 39.00 40.39 37.00 44.00 43.00 46.00
46–60+ 22.05 33.00 33.99 36.00 29.53 39.23 37.90 41.20 31.93 39.95 42.60 44.56
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oldest face image sets with 10,000 images each were used as
probe sets. In the case of the FERET dataset, 1196 face images
from the fa set were used as the gallery set, while the dup I and
dup II sets were used as the probe sets. For each 128 9 64 dif-
ference half-face image, we extracted a 2048-dimensional da-
AFF feature vector. Similarly, for each region of size 32 9 64,
a 512-dimensional da-AFF feature vector was extracted. Face
identification experiments were conducted for the experimental
setup described above.
The rank 1 identification accuracies for the difference half-

face and four regions are reported in Table 13a,b for the
MORPH II and FERET datasets, respectively.
On analyzing the accuracies of the various age groups, it can

be observed that the recognition accuracy decreases for older age
groups, compared to younger age groups. The decrease in the
recognition accuracy can be attributed to the significant variations
in the facial asymmetry with increasing age. For younger age
groups (16–20 and 21–30 for MORPH II and 10–20 and 21–30
for FERET datasets), region 4 gave the highest recognition accu-
racy of 57.80% and 56.58% for the older image set and 52.10%
and 51.50% for the oldest image set on MORPH II. The rank 1

recognition accuracy of 58.17% and 55.26% was achieved for the
dup I set and 51.70% and 50.00% for the dup II set for the
FERET datasets, respectively. The highest recognition accuracy
of region 4 is attributed to having more symmetric information in
this region. On the other hand, for the older age groups (31–45
and 46–60+), the highest recognition accuracy was achieved for
the difference half-face, for both the MORPH II and FERET data-
sets, compared to individual regional accuracies. This finding
occurs because facial asymmetry increases with the passage of
time for all of the facial regions for these age groups. Thus, the
difference half-face plays a significant role in recognizing face
images across aging variations for older age groups, while for
younger age groups, region 4 is the most discriminative.

Age-Separated Face Recognition Algorithm

The objective of this component of study is to build a face
recognition algorithm based on the knowledge learned from the
roles of various asymmetric facial regions in recognizing age-
separated face images. The proposed approach is formulated as
follows:
• Age group of probe face image is estimated.
• da-AFF feature vectors are extracted for difference half-face

images, for both the gallery and probe images.
• Matching scores of da-AFF feature vectors are calculated for

the gallery and probe images.
• To perform recognition of face images with aging variations,

weights are assigned to different regions of the difference
half-face images, based on their recognition significance as
related to different age groups.

Figure 17 gives an overview of the proposed age group esti-
mation-based face recognition approach. The implementation of
the proposed face recognition approach is given in the following
steps:
• To extract facial features, each face image was preprocessed.
• A 2048-dimensional da-AFF feature vector is extracted for

each difference half-face image using features extracted from
the f7 layer of AlexNet. Similarly, a 512-dimensional feature
vector is extracted for each region of a difference half-face
image.

• Matching scores of gallery and probe face images were calcu-
lated by comparing the respective L2-normalized da-AAF fea-
ture vectors. A matching-score matrix M of size A 9 B was
calculated for the da-AFF-based matching scores. Here, A and
B represent the number of probe and gallery images, respec-
tively. The matching-score matrix M has a negative polarity,
that is, smaller matching scores represent a higher similarity
between the gallery and probe images and vice versa.
Five matching-score matrices Mj were calculated, one for the
normalized da-AFF features of the difference half-face and four
for the da-AFF feature vectors of the four regions.

• Each matching-score matrix was normalized before fusion in the
f8 layer of AlexNet. A simple min-max rule (51,52) was used to
normalize each row, on a scale of 0–1, as shown in Eq. 18.

M0
jrow ¼ Mjrow �minðMjrowÞ

maxðMjrow �minðMjrowÞÞ �minðMjrow �minðMjrowÞÞ ;

ð18Þ

where max(Mjrow) and min(Mjrow), respectively, represent the
highest and lowest row-specific values in the matching-score
matrix.

FIG. 13––Extraction of difference half-face.

FIG. 14––Extraction of asymmetric facial regions using attribute profiles
(a) original difference half-face image and (b) asymmetric facial regions
extracted using attribute profiles.
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• The five normalized matching-score matrices, for the differ-
ence half-face and four regions, were then fused to obtain a
combined matching-score matrix Mrow using the weighted
sum rule shown in Eq. 19.

Mrow ¼
X5
i¼1

wiMrowi; ð19Þ

In Eq. 18, wi represent the weights that pertain to the ith differ-
ence half-face or region and can be assigned using the recogni-
tion rates of the difference half-face and four regions, as given
in Eq. 20.

wk
i ¼

rkiP
rki
; ð20Þ

where rki represents the recognition rates of the kth age group of
the gallery and probe face images and the ith difference half-face
or region. For example, if the predicted age group of a probe
image was 16–20, then weights could be assigned to the differ-
ence half-face and each region as per the recognition accuracies,
as calculated for the corresponding age group given in Table 13.
The matching-score matrix Mrow was once again normalized
using the min-max rule (53,54) to obtain M0

row, as shown in
Eq. 21.

M0
row ¼ Mrow �minðMrowÞ

maxðMrow �minðMrowÞÞ �minðMrow �minðMrowÞÞ :

ð21Þ

• Finally, the matching scores obtained from M0
row were used to

calculate the recognition accuracies in the SoftMax layer of
the AlexNet.

Evaluation and Experimental Results of the Proposed Face
Recognition Algorithm—To evaluate the performance of the pro-
posed face recognition algorithm, face identification and face
verification experiments were performed on the MORPH II and
FERET aging datasets, as described below.
• In the case of the MORPH II database, the 10,000 youngest

face images of 10,000 subjects were used as the gallery,
while 10,000 face images each from the older and oldest face
image sets were used as aging probe sets.

• In the case of the FERET database, standard gallery and
probe image sets were used to evaluate the performance of
the proposed face recognition algorithm. A total of 1196 face
images from the fa set were used as the gallery set, while the
dup I and dup II sets were used as the probe sets.

As shown in Fig. 16, the age group of the probe image was
first predicted using the hierarchical age group estimation
approach proposed in Section 3. Based on the predicted age
group, weights were assigned to the appropriate difference half-
face or regions depending on their significance in recognizing
the age-separated face images of different age groups, as evalu-
ated in Table 13. The rank 1 recognition accuracies and verifica-
tion accuracies at 0.001 false accept rate (FAR) are reported in
Table 14 for all of the face recognition experiments.

Comparison with Existing Methods—The performance of the
proposed face recognition approach was compared with the fol-
lowing existing state-of-the-art approaches.
• A commercial off-the-shelf (COTS) system Verilook (52) is

used as a baseline algorithm.
• Discriminative model (DM) (18). In DM, the MLBP and SIFT

feature vectors were extracted for overlapping patches of face
images. A discriminant analysis was then performed to construct
a random subspace-based fusion model for face recognition.

• Bacteria foraging fusion (BFF) (19). In BFF, a local binary
pattern (LBP) was used to calculate the matching scores for
the face regions, including the mouth, binocular, and periocu-
lar. Region-specific weights were then optimized to achieve
better recognition accuracy.

• Multiview discriminative learning (MDL) (20). In MDL, three
locals (LBP, SIFT, and GOP) were extracted from overlapping
patches of face images. Subsequently, the interclass separation
was maximized and intraclass separation minimized by solving
an optimization problem to recognize face images effectively.

• We also performed face identification and face verification
experiments using a-AFF feature vectors to compare their perfor-
mance with da-AFF feature vectors and the proposed approach.

The performance of the proposed face recognition method is
quantified through two measures: (i) cumulative match character-
istic (CMC) curves for face identification experiments and
(ii) receiver operating characteristic (ROC) curves for face verifi-
cation experiments, as shown in Figs 18 and 19, respectively.
An analysis of the error introduced by the age group estimation
of the probe images compared to the actual age groups, in recog-
nizing face images, is also presented in row (vii) of Table 14.

Computational Complexity Analysis—It is worthwhile to
underline the two-phased nature of the proposed method presented
in this study. The first phase contains the procedures for age group
estimation. Here, the computational complexity of the dimension
selection through the F-test is O(n2) in terms of Big-O notation.
The computational complexity of calculating the discriminating
scores using CCA is O(nd2) + O(d3), where d = max (Dx, Dy).
For the classification stage, as we only need to train N�1 binary
SVM classifiers, the order of complexity is O(log N).

FIG. 15––Graphical representation of dCNN-based feature extraction using AlexNet.
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FIG. 16––da-AFF extraction pipeline.

TABLE 13––Rank 1 recognition accuracies of different facial regions for (a) MORPH II and (b) FERET datasets.

(a)

Rank 1 Recognition Accuracy for Difference Half-face and Four
Regions for Older Image Set

Rank 1 Recognition Accuracy for Difference Half-face and Four
regions for Oldest Image Set

Age Groups Difference Half-Face Region 1 Region 2 Region 3 Region 4 Difference Half-Face Region 1 Region 2 Region 3 Region 4

16–20 68.00 57.50 61.60 61.00 69.00 59.00 53.98 61.20 52.00 63.00
21–30 61.00 56.60 63.50 64.00 66.66 49.15 50.00 58.00 59.50 62.70
31–45 62.99 56.00 62.00 57.21 57.84 63.00 49.10 58.00 56.20 55.66
46–60+ 63.41 50.00 60.00 58.50 56.00 55.31 43.00 40.00 51.92 54.00

(b)

Rank 1 Recognition Accuracy for Difference Half-face and Four
Regions for Dup I Set

Rank 1 Recognition Accuracy for Difference Half-face and Four
Regions for Dup II Set

Age Groups Difference Half-face Region 1 Region 2 Region 3 Region 4 Difference Half-face Region 1 Region 2 Region 3 Region 4

10–20 63.98 54.98 60.94 62.04 67.03 59.82 52.13 59.82 50.42 60.25
21–30 60.94 53.46 62.04 63.98 66.06 58.11 51.28 58.11 53.41 60.25
31–45 60.94 53.04 59.97 57.61 54.01 52.13 50.42 58.11 53.41 52.13
46–60+ 63.98 51.93 59.00 57.06 54.98 54.70 40.17 34.18 52.13 51.28

The bold values show the highest accuracies.

FIG. 17––Overview of the proposed method to recognize age-separated face images.
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The second phase consists of face recognition. The extraction
of AFF feature vectors results in a linear complexity of O
(GNdp + 4LNdp) for the APs, while it is OðN2

dpÞ for the Hu
moment invariants, where G, L, and Ndp represent the number of
gray levels, number of transformation levels in APs, and number
of pixels in the difference half-face image, respectively. The total
time complexity of AlexNet is computed in terms of all of its con-
volutional layers, as OðPn

i¼1 yi�1x2i yiz
2
i Þ. Here, n is the number of

convolutional layers, yi�1 is the number of input channels of the
ith layer, yi is the number of filters in the ith layer, xi is the spatial
size of the filters, and zi is the size of the output feature map.
The above analysis shows that the calculation of discriminat-

ing scores using CCA and feature extraction using AlexNet are
computationally the most demanding stages in the age group
estimation and face recognition components of the proposed
approach, respectively.

Results-Related Discussion

The research conducted in this paper covers two important
facial aging aspects: age group estimation and face recognition.
The performance of these two aspects is discussed separately.

Performance of the Age Group Estimation Algorithm

In the case of the age group estimation task,
• The proposed method achieved an overall age group estimation

accuracy of 93.86% and 92.98% on the MORPH II and FERET
datasets, compared to 79.41% and 77.99% given by LBP vari-
ants proposed in Ylioinas et al. (3), while Face++ gave an
overall accuracy of 87.26% and 86.23% on the MORPH II and
FERET datasets, respectively. Hence, the proposed method
outperformed both of the existing methods considerably.

• The superior age group estimation performance shows that
facial asymmetry is a strong indicator of age, as depicted in
facial asymmetry measurement and evaluation.

Performance of the Face Recognition Algorithm

The accuracy of the proposed face recognition approach was
compared with existing state-of the-art methods. The effect of

errors introduced by the age group estimation of the probe face
images into the face recognition algorithms was also analyzed.

• In the case of the MORPH II database, the rank 1 recognition
accuracies of 90.02% and 80.00% were achieved for the
older and oldest image sets, respectively. For the FERET
database, the rank 1 recognition accuracies of 81.99% and
75.21% were achieved for the dup I and dup II sets, respec-
tively. For face verification experiments, accuracies of
91.13% and 82.50% at 0.001 FAR were obtained for the
selected subsets of the MORPH database. Similarly, for the
FERET database, we obtained verification accuracies of
83.10% and 77.77% for the selected subsets.

• The identification and verification results reveal that the pro-
posed approach outperformed the existing approaches, includ-
ing COTS (52), sum rule fusion, DM (18), BFF (19), and
MDL (20), on both the MORPH II and FERET datasets,
which shows the effectiveness of the proposed approach in
recognizing age-separated face images.

• The proposed automatically learned da-AFF descriptors yield
superior recognition performance compared to the handcrafted
features that are employed in the existing methods, such as
DM (18), BFF (19), and MDL (20).

• To analyze the errors introduced by the age group estimation of
the probe images, the rank 1 accuracies for face, difference half-
face, and four regions were calculated for both scenarios: (i) with
actual age groups and (ii) with estimated age groups. A decrease
in accuracy of 2.68% and 1.46% was observed for the older
and oldest image sets for the MORPH II dataset. For the
FERET dataset, the accuracy decreases by 1.06% and 1.11%
for the dup I and dup II sets, respectively. For the face verifi-
cation experiments, these errors are 1.72% and 0.88% for the
selected subsets of the MORPH II database, while they are
0.98% and 1.61% for the selected subsets of the FERET data-
base. The minimal decrease in accuracy for both the MORPH
II and FERET aging datasets shows the superior performance
of the proposed age group estimation approach.

• The face recognition results across aging variations suggest
that integration of the knowledge learned from age group
estimation into the face recognition algorithm boosts the
recognition accuracy of the face images considerably.

TABLE 14––Comparison of face recognition accuracies of proposed approach with existing algorithms for MORPH II and FERET databases.

Approach Facial Region(s)

Rank 1 Recognition Accuracy (%) Verification Accuracy @ 0.001 FAR

MORPH II FERET
PROBE SET Probe Set MORPH II FERET

Older Images Oldest Images Dup I Dup II Older Images Oldest Images Dup I Dup II

(i) a-AFF Difference half-face 70.00 66.00 61.35 60.68 72.02 64.10 66.00 64.10
(ii) da-AFF Difference half-face 87.11 78.50 72.02 70.08 87.95 81.00 76.00 71.79
(iii) COTS (Verilook) (52) Face 84.07 76.00 69.25 67.09 86.01 80.00 73.00 70.08
(iv) DM (18) Overlapping patches 75.50 65.60 69.94 64.10 76.10 67.52 70.08 64.95
(v) BFF (19) Face, mouth, binocular,

periocular
71.00 64.00 68.42 61.11 72.01 65.39 68.97 62.39

(vi) MDL (20) Overlapping patches 67.00 59.90 67.03 60.68 67.41 60.00 68.05 61.96
(vii) Proposed approach with
weights assigned to difference
half-face and regions (actual
age groups)

Face, difference half-face,
region 1, region 2,
region 3, region 4

92.50 81.19 83.10 76.06 92.73 83.24 83.93 79.05

(viii) Proposed approach with
weights assigned to difference
half-face and regions
(estimated age groups)

Face, difference half-face,
region 1, region 2,
region 3, region 4

90.02 80.00 81.99 75.21 91.13 82.50 83.10 77.77
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Conclusions

In this paper, we presented two important facial aspects: age
group estimation and age-assisted face recognition. We also ana-
lyzed facial asymmetry as an intrinsic facial feature to estimate
the age group of a given face image. The role of different asym-
metric facial regions in estimating age groups has been explored.
Deeply learned asymmetric facial features were used to recog-
nize face images while incorporating the knowledge learned
from age group estimation. In conclusion, first, it was observed
that facial asymmetry is an age-dependent feature. Second, it is
deduced that asymmetric facial dimensions can be effectively
used for age group estimation. Third, we observe that deeply

learned asymmetric facial features have more discriminative
power compared to the handcrafted features employed in some
existing methods. Finally, the experimental results on two large
facial aging datasets, MORPH and FERET, show that inserting
the knowledge learned from age group estimation into the face
recognition algorithm can enhance the face recognition accura-
cies considerably. Age group estimation and face recognition
accuracies clearly show the efficacy of the proposed approach
compared to existing state-of-the-art methods.
In the future, we plan to extend this work in the following

directions:
• Facial asymmetry-based demographic estimation, including

gender and ethnic information.

FIG. 18––CMC curves showing face identification performance for (a) MORPH II small, (b) MORPH II large, (c) FERET small, and (d) FERET large
temporal variations.
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• Integration of demographic information into face recognition
algorithms to boost the performance.

• Building facial aging models that incorporate facial asymmetry.
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